

MICRO-LED ARRAYS

Tomorrow's smart lighting and display technology

Leti, technology research institute

Contact: leti.contact@cea.fr

MicroLEDs: next generation smart lighting and display components

The next generation of smart lighting products will better control lighting intensity, shape, direction and color by integrating pixelated light sources, while display applications will be more energy efficient. GaN microLED technology fulfills both these projections by combining the efficiency of GaN LED direct emission and potential for manufacturing few micron size LEDs.

DISPLAY

Projection, flexible, transparent, head-up & head-mounted displays

- More pixels
- Energy saving
- Brighter
- Better image quality: contrast, color saturation (true red, true green, true blue), view angle
- Robust
- More functionalities: transparent screens, foldable screens, autonomous energy harvesting

Key requirements: **MORE BRIGHTNESS & SMALLEST PITCH**

MicroLED arrays meet both

through high performance, low consumption, compact products combining brightness and small pitch.

SMART LIGHTING

Automotive lighting, outdoor lighting, indoor lighting, etc.

- Better use of time, space & intensity
- Non-visual effects
- Health and wellness
- More than light: visible light communication
- Better light usage by spatial, intensity, data
 - and color control

LETI'S COMPLETE MICRO-LED ARRAY PROCESS

LETI'S VALUE PROPOSITION EMBRACES A COMPLETE DESIGN TO SYSTEM CHAIN

CHALLENGES

GaN pixelization

- Auto aligned process for optimizing process flow
- Pitch reduction: down to ~1 µm
- Planar interfaces for optimizing hybridization

Hybridization

- Wide hybridization portfolio
- Cold process: microtubes for hybridization down to 10 μm pitch
- Direct heterogeneous bonding for smaller pitch down to 1 µm
- Metal/metal or oxide/ oxide direct bonding

Active matrix • High current active matrix fabrication

		Mm W0 + 54.mm Bpri A - 552 Mm W0 + 54.mm Bpri A - 552 Mm W0 + 54.mm Bpri A - 552 Brace 2.22762 W8 - 50.01 Brace Stund - 6.000		
 DESIGN & SIMULATION Ray tracing Semiconductor structure simulation: Silvaco 	MATERIALS & SUBSTRATES LED structure growth on Sapphire or other substrates	 PROCESS/DIES Advanced LED process: VTF, TFFC LED array process: pixelation down to 3 µm pitch Continue to a process of the process of t	DEVICES High voltage LED chips Chip scale packages Microdisplays 	MODUL Smart drivers Chip on board Smart sensors with er
 Multiphysics simulations: Comsol Light extraction tools 	 MOCVD growth GaN nanowire growth Epitaxy on patterned substrates Semipolar growth 	 IC silicon active matrix for LED driving 10 μm pitch or less connectors 3D heterogeneous integration Bonding of LED arrays on CMOS active matrices 		electronics
INFRASTRUCTURE	Four InGaN MOCVD epitaxy reactors dedicated to R&D and industrial process development.	Full process line dedicated to III-V compound semiconductors from 2" to 12" wafer (wafer thinning & bonding, etc.)	Device simulation & characterization platform tools: goniometer, light spectrum emission diagram, infrared thermography, etc.	Pilot line for LED die pa various technologies (ch chip to wafer, wafer to matrix hybridization, et

Color conversion

Quantum dots2D Quantum wellsNano grain phosphors

Thermal packaging

- Thermal resistance reduction
- ASIC thinning
- TSV

Optical Systems:

- Head Mounted displays (HMDs)
- Head Up Displays (HUDs)

ackaging: hip to case, wafer), LED tc.

LETI'S ROADMAP **TO HIGHLY SCALABLE PROCESSES**

OVERCOMING THE TECHNICAL CHALLENGES OF MULTIPLE APPLICATIONS

To address the different applications, technical challenges have to be overcome. Small pixel size (below 3 µm), color conversion and small pitch hybridization will be essential in the mid to long term.

Leti's longstanding know-how and experience in miniaturization and microelectronic processes make it perfectly positioned to take up these different challenges.

SHORTTERM

SMART LIGHTING

Monochrome LED arrays 10 µm pitch 10⁵ Cd/m²

Leti's core competencies

- Planar microLED technology
- micro-tube hybridization
- Active matrix LED design
- White conversion

HMD PROFESSIONAL

Monochrome LED arrays 10 µm pitch High brightness: 10⁴ Cd/m² Resolution: 10⁶ pixels

Leti's core competencies

- Direct bonding
- microLED process optimization

HUD AUTOMOTIVE

Color LED arrays 10 µm pitch Super high brightness: 10⁶ Cd/m² Resolution: 800 X 500

Leti's core competencies

Color conversion

MID TERM

3 µm pitch Super high brightness: 10⁶ Cd/m² Resolution: 1920 X 1080

Leti's core competencies

- Color conversion
- Direct bonding
- microLED process optimization

KEY ACHIEVEMENTS

Monolithic LED arrays with a very small pitch (10 µm) and interpitch (2 μ m)

Bright enough for a HUD projection system

10 µm pitch hybridization using a Room temperature utube hybridization technology

Active matrix design: Design and fabrication of dedicated CMOS circuit adapted to GaN microLED arrays control

ABOUT LETI

Leti is a technology research institute at CEA Tech and a recognized global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions. Committed to innovation, its teams create differentiating solutions for Leti's industrial partners.

By pioneering new technologies, Leti enables innovative applicative solutions that ensure competitiveness in a wide range of markets. Leti tackles critical, current global issues such as the future of industry, clean and safe energies, health and wellness, safety & security...

Leti's multidisciplinary teams deliver solid micro and nano technologies expertise, leveraging world-class pre-industrialization facilities.

For 50 years, the institute has been building long-term relationships with its industrial partners providing tailor-made solutions and a clear intellectual property policy.

Leti, technology research institute Commissariat à l'énergie atomique et aux énergies alternatives Minatec Campus | 17 rue des Martyrs | 38054 Grenoble Cedex 9 | France www.leti-cea.com

